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An analytic implementation of the sfip line method (the method of characteristics) is proposed for statically definable problems 
of the plane plastic defi)rmation of an ideal rigid plastic medium. The solution of the Riemann problem (the initial characteristic 
problem) with boundA'ry conditions defined by power series is represented in terms of generalized hypergeometrie fimctions. 
Other bonnda~j-value problems (the Caucby problem and the mixed problem) reduce to the equivalent Riemann problems. A 
mixed problem with Prandtl faietion in a eurvilinear contact surface and a Cauchy problem with arbitra~ smooth initial data are 
treated. An equation governing the form of the flee surface is obtained. The analytic representations of the radii of curvature 
of the characteristics in. the physical plane and in the plane of the velocity hodograph are used to calculate the di~ipation power 
in the plastic domain, l~roblems of reduction in terms of long and short wedge-shaped matrices using the proposed energy approach 
are considered as an appfication. @ 1997 Elsevier Science Ltd. All r io t s  reserved. 

Slip line fields in applied plasticity problems [1] are usually calculated using numerical or graphical 
methods [2-3]. In this case, there is no control over the accuracy of the calculations. Furthermore, the 
dissipation power is not calculated in this approach. A characteristic, the deformation stress, which is 
associated with this quantity and is important in applications is determined from the static conditions. 
Technical difficulties arise here in finding the arbitrary constant when integrating the stresses along an 
intersecting surface. 

Exact solutions are known only for a small number of problems. The dissipation power has been found 
analytically [4] in the special case of fields which are formed by circular arcs. Below, this approach is 
extended to the ca.,~e of arbitrary arcs which are defined by series in powers of the angular (characteristic) 
coordinates. The smoothness of the initial data enables us to obtain a solution of the Riemann problem 
in a convenient form from the well-known classical result [5]. The basic boundary-value problems is 
reduced to the equivalent Riemann problem for more general boundary conditions (a curvilinear 
boundary in the mixed problem and Canchy problems with arbitrary smooth initial data) than in [6]. 

The results of the calculation of the stress in the case of a slip line field which is formed by circular 
arcs are identical to those obtained previously [4]. In the case of the problem of reduction in a long 
wedge-shaped matrix, the deformation stresses calculated using the proposed energy approach are 
compared with the values found approximately [6] from the static conditions. 

1. B A S I C  R E L A T I O N S  

Suppose that a bomogeneous isotropic body is in a state of plane plastic deformation: u = (ul, u2) 
is the velocity field, (x,y) ~ D, D is the projection of the body onto the xOy plane; e(u) = [~(u)] is the 
deformation rate tensor, e~ 7 = (ui, j + uj i)/2, [oi.] is the stress tensor and o is the hydrostatic pressure 

• ° • ' ~ ° ° • 

We assume that the followmg relations are satisfied m the domain D: 
1. the equilibrium equation 

~ii,j = O, i , j = l , 2  (1.1) 

(the rule of summation over repeated indices is used) 
2. the Mises flow condition (k is the plasticity constant) 

2 2 
(G11 - ~22) + 4~12 = 4k2 
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Fig. 1. 

3. the incompressibility condition 

divu = 0 (1.2) 

4. the condition for the direction of the area elements of  maximum shear stress and maximum rate 
of  shear strain to coincide 

( ( ]11  --  ( ] 2 2 ) / 0 1 2  = ( E l l  - -  E 2 2 ) / E ] 2  (1.3) 

We know [7] that Eqs (1.1) reduce to a system of quasilinear equations of the hyperbolic type 

a(]/ax - 2k(cos 2q0 aq~/ax + sin 2~0 a~0fdy) = 0 

a(]/ay - 2k(sin 2~0 a~p/Ox + cos 2~0 acp/ay) = 0 

(1.4) 

where cO is the angle of inclination of an a-line to the abscissa. The characteristics of this system coincide 
with the slip lines. The Hencky conditions 

(] - 2k~p = const, (] + 2k~0 = const (1.5) 

are satisfied along the a-  and 13-lines, respectively. 
Equations (1.2) and (1.3) also reduce to a system of equations of  hyperbolic type in the velocity 

components, and the characteristics of this system coincide with the slip lines. 
In the domain where both families of characteristics are curvilinear, we define the characteristic 

coordinates (~t, I]) by means of the formulae 

= ~o/2 + ((] - (]o)/(4k), [3 = (1)/2 - ((] - (]o)/(4k) 

where a0 is the value of  (] at the origin of the system of coordinates. The geometric meaning of the 
coordinates (a, I~) is dea r  from Fig. 1. 

We introduce the following notation: R(a ,  ~), S(a,  I]) are the radii of curvature of the 0~- and 13-lines 
in the physical plane and X(a,  I~), Y(Qt, [3) are the projections of the radius vector of the point (x, y) E 
D onto the direction of  the slip line at this point. Suppose that (fl, f2) is any of  the ordered pairs of (R, 
S), (X, I 0 functions. The relations 

A + Of2/Oa = 0, A - ali/al3 = 0 (1.6) 

are then satisfied. 
It follows from this that any of the above functions satisfies the telegraph equation 

a2j,?atz a~ + f =  0 (1.7) 

in the domain D. 
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2. S O M E  B O U N D A R Y - V A L U E  P R O B L E M S  

The Riemann problem. Suppose that the required function f(x) is specified on the segments of the 
slip lines OA and OB (Fig. 1) 

f(cqO)= ~'. c, ct,,, O<ct<cq, f(O,~)= ~ d.~i,,, O<_f~<f3, (2.1) 
n=O n=O 

where cn, d,, are ;given numbers and or,, = ot"/n!, ~n = ~n/n!" A solution of problem (1.7), (2.1) 
exists, and it is maique in the characteristic rectangle OACB [8]. This solution is given by the 
formula [5] 

a"1o(24- -i) a"Io(24 -i) 
f(ot,~)=CoJo(2~-~)+ Y, Cn +d n 

.>0 ~ "  ~x" " 

where Jn(z), I,,(z) axe Bessel functions of real and imaginary argument, respectively. 
Using fimctional relations for special functions [9], the last equality can be converted to the 

form 

f(ct,[~) = c00Fl(1,-Ct[~) + ~ (cnO~ n +dn~ln)oFl(n+l,-ot~) 
n=l 

oFl(k + l,z)=k! ~z,  / (t + k )! 
t=O 

(2.2) 

Formula (2.2) remains true if the coordinate ct and/or 13 are negative. 
Now, suppose that the characteristics OA and OB are defined by their own radii of  curvature 

R(~ ,O)=  ~a .c~ . ,  O<o~<oq, S(O,~)= ~ b . ~ . ,  O<~<_f3, (2.3) 
n=O n=O 

Using (1.6), we obtain the remaining boundary conditions 

e(o,~) = a 0 + ~ bn~n+l, S(ct, O) = b o - ~" anOtn+ 1 
n=O n=O 

By virtue of (2.2), we obtain the solution of the Riemann problem for R(ot, [3), S(ot, [3) in the form 

R(¢x, [$) = aooF1 (1,-cx[$) + ~ (a.oc. + b._tfSn) o F I (n + 1,-ot~) 
n=l 

S(ot,[3) = booFll(l,-ct[3) + ~.(bn~ n - an_lO~n)oFl(n + 1,-~X[3 ) 
n=l 

(2.4) 

The Cauchy problem. Suppose the functions a = a(T), q~ = 9(T) are given on the curve OC, which 
nowhere has a characteristic direction (Fig. 2). Henceforth, T is the angle between the tangent to the 
curve OC and the Ox axis. A solution of system (1.4) with such initial data exists, and it is unique in 
the characteristic triangle OAC [8]. 

We now find the radii of curvature R(ct, [~), S(ct, [~) of  the characteristics of the physical plane. From 
(1.5), the dependence 

~(T) = G0 + 2k(cx(y) - [3(T)) 

can be obtained in OC. 
Since ~P(T) = ct("0 + [3(T), it is possible to determine ¢t(T), [~(T) from this. With an accuracy up to an 

infinitesimal of higher order, we have 

R(ct(T), [3(T)) dcqcos T1 = -S(ct(T), [3(y)) d[~/sin 11 = r(y) d y (2.5) 

where r(y) is the radius of curvature OC and q = y -  ~p(y) is the angle between the tangent to OC and 
the a-line passing through the tangent point. 
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Fig. 2. 
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Fig. 3. 

We assume that the functions r(T), a(T), 13(T) are sums of  power series with uniformly bounded 
coefficients. From (2.5), it is then possible to obtain boundary conditions for the form of (2.3) for the 
equivalent Riemarm problem. 

We will now consider a special case. Suppose that the normal and shear stresses: on = const, xn = 
const in O C  are given. Then, in OC, we have 

a = f3, rl = (~ - arccos(x.lk))/2 = const 

Denoting r(7 ) = r(2a + 11) by r(a), we obtain from (2.5) that 

R(a ,  a)/cos rl = - S ( a ,  a)/sin 11 = +2r'(a) (2.6) 

On substituting (2.4) here when a = 13, recurrence relations can be obtained for determining the 
coefficients at, bk. 

We now apply this scheme to a model problem concerning a body with a circular aperture of radius 
a loaded with a uniform normal pressure. Then, 11 = ~/4. When r(a) = a, we obtain the formula 

ao=a '~ l~ ,  b0 = -a  " ~  

( - l y  an + bn-I = O, ~, 
n+2t=k t [(n + t) [ n+2t=k 

(-I) t bn -an-I =0, k>O 
t!(n+t)! 

from (2.6) taking account of (2.4) .  
It follows from this that an = a ~/(2), bn = (-1)n+la ~/(2) and hence R ( a ,  O) = a ~/(2)e a, S(0, 13) = --a 

~/(2)e -#, that is, the slip lines are logarithmic spirals. In applications, the case is important when on = 
xn = 0 in O C  (the part of the boundary which is stress4ree) but the equation of  O C  in the physical 
plane is unknown. If one of  the characteristics is known, such as the a-line, for example, the radius of  
curvature of  the curve O C  

r (a)  = R(a, a)/'~/2 

and the recurrence formulae for the coefficients b n 

a, + b,-1 + bn - a,,_~ = 0, n = 0, 1 . . . .  

follow from (2.6) (the notation a_ 1 = b_  1 = 0 has been introduced in order to simplify the writing). 

The mixed problem. Suppose that a segment of  the a-l ine OA and the angle q~ = 7-11(7) are given 
on a smooth curve O C  which nowhere has a characteristic direction: x = x(7),y = Y(7), 7 ~ [70, 71] (Fig. 
3). Such a problem arises, for example, if O C  is a contact line in which the Prandtl friction law: xn = 
lak, 0 ~< St ~< 1 holds. We next assume that.Prandtl friction acts inrthe contact line. Then, ~1 = const. 
Suppose that 13 = 13(a) is the equation of the curve O C  in the al~-plane. Then, by analogy with (2.6), 
we have in O C  that 
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R(0t, ~((x)) / cos ~ = +S(ct, ~(a))~" / sin 11 = +r(a  + ~(a) + 11) (1 + ~') (2.7) 

We now consider some special eases. 
1. OC is a scgmmlt of a straight line. Then, a + 13 = 0 in OC. To be specific, suppose that R ( ~  13) 

and S((x, [3) are of rite same sign. As in the preceding case, we obtain the recurrence formulae for the 
coefficients b n 

(an + ( - l ) n b n _ l ) t g r l - ( - l ) n b n  +an_ I =0, n=0,1 .... 

from the first equation of (2.7) taking (2.4) into account. 
2. OC is an are of a circle of radius a. Suppose that the equation of OC in the characteristic plane is 

P = = 0 
Then, from (2.7), it is possible to obtain recurrence formulae for the coefficients bn, Ck 

a o / cos11 = a(1 + c 1), - a o tg~ = boc I 

( a I + boq ) / cos ~ = ac2, - ( a t + boq ) tg 11 = ( -a  o + blc I ) c I + b o c 2 . .  . 

A similar approach can be used in the ease of an arbitrary curve under the assumption that 13(a) is 
the sum of a power series. 

Solutions of boundary-value problems for X(cx, 13), Y(a, 13) can be obtained in an analogous manner. 

3. PLASTIC P O W E R  

Suppose that the plasticity domain D is the union of the domains Di (i = 1, 2 , . . . , / ) ,  where Di is 
one of the following domains: (1) a curvilinear characteristic rectangle; (2) a curvilinear characteristic 
triangle, the hypotenuse of which lies in the contact line; (3) a eurvilinear characteristic triangle, the 
hypotenuse of which lies in the free surface; (4) the domain of a simple stressed state; 5) the domain 
of a uniformly strese~ed state [7]. 

We assume that the following conditions are satisfied. 
1. Local Cartesi~ua coordinates are defined in each domain Di. We call the origin of the system of 

coordinates, the base point of the domain Di. The Ox and Oy axes are directed along the a- and 13-1ines 
respectively, which pass through the base point. One of the local systems of coordinates is declared to 
be the global system of coordinates. 

2. Local characteristic coordinates are introduced in each domain Di. These are measured from the 
coordinate axes of the local Cartesian system of coordinates. The local characteristic coordinates and 
the radii of curvature of the characteristics preserve their sign in each domain D i. 

3. A tracking system of coordinates, the origin of which coincides with the base point, is associated 
with each point M(tt, 13) of a domain Di and the coordinate axes are rotated through an angle (z + [3 
with respect to the axes of the local Cartesian system of coordinates. 

4. Suppose that D i is a eurvilinear characteristic rectangle, C is a point which is diagonally opposite 
to the base point and Di' is the image of the domain Di in the plane of the hodograph. The image of 
the point C is the base point in 1){ and the local Cartesian system of coordinates is rotated relative to 
the tracking system at point C through an angle of ~/2. The analogous relations for domains of other 
forms will become clear from the examples. 

To be specific, i(,Di = {(ct, ~): 0 ~< ~ ~< o~1, 0 ~ ~ ~ ~1}, it follows from 4 ° that the local characteristic 
coordinates (ix, [3 ) :in the plane of the hodograph are related to the eharacteristie coordinates in the 
physical plane by the formulae 

a ' = a - a , ,  B'=B- 1 

The plastic power W in domain D is defined by the formula [7] 

1 I1! 

W/k= E If ndxdy+ E I Itu]jldl (3.1) 
i--i oi jft tj 

where H ffi ~/(2~fij) is the intensity of the shear rate, lj (j = 1, 2 . . . . .  m) are lines of discontinuity of 
the velocity and [u]/are the jumps in the velocity vector in the lines/j. 



316 L.S. Novozhilova and S. V. Urazhdin 

Suppose that p(a', lY), 8(a', lY) are the radii of curvature in the plane of the velocity hodograph. We 
know [3] that each of these functions satisfies the telegraph equation (1.7), in which the variables ~ 13 
can be replaced by a', ~'. In the characteristic coordinates, we have [3] 

El l  = E22 = O 

H : 21 2 l :  I p(c¢', 13') / 13) - a(,x,, 13') / 13)1 

where (a', 13') is the image of the point ( ~  [~) of the physical plane in the plane of the hodograph. 
Analysis of the properties of the mapping of the mesh of characteristics in the plane of the hodograph 

when conditions 1--4 are satisfied shows that the expression within the modulus sign in the last formula 
preserves its sign in any domain Di. This enables us to calculate the double integrals in (3.1) in the local 
characteristic coordinates. 

Suppose, for example, that Di = {(a, 13): 0 ~< a ~ al, 0 ~ ~ ~ l~1}. Then 

aj 13 I 
W / :  -b- k f f (~(O¢ - O~1, [~ - ~1 ) R(~,, ~)  - p(o, - O¢1, ~ - ~1 ) S(o¢, ~))  d ~  d13 

o o 

Here, R(a, I~), S(a, 13), p(a', lY), 8(a', 13') are the solutions of the corresponding Riemann problems in 
the physical plane and in the hodograph plane which have the form (2.4). The last integral can easily 
be evaluated. Similar calculations can be performed if the domain D i is the characteristic triangle in 
which the Cauchy problem or the mixed problem is formulated. 

H Di is the domain of a simple stressed state which, to be specific, is defined by the conditions 0 ~< 
a ~< al, [~ = 0 then S = oo. In this case it follows that the plastic power should be calculated using a 
polar system of coordinates matched to the slip lines (see Section 4). 

4. EXAMPLES 

1. Reduction of the band through a short wedge-shaped matrix. The deformation scheme and the 
corresponding hodograph are shown in Fig. 4. The radii R0, So are determined from elementary considerations 
and the quantity 1/1 is determined by the incompress~ility condition. The initial conditions for the Riemann problems 
have the form 

R(a, O) = Ro, S(O, [3) = -So 

p(a', O) = 8(O, lY) = Po, Po = [v~ - v2 [/~/2 

- . . . . .  

F 

Fig. 4. Fig. 5. 
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From (2.4), we have (in order to simplify the notation, the indices have been omitted in the notation oF 1 for the 
hypergeometric funo~ion) 

R(a, [~) = RoF(I, --a[~) - So[3F(2, -a[~) (4.1) 

S(ct, ~) = -SoF(1, --ot~) - Ro~XF(2, .--otiS) 

9((x', [3') = po(F( 1, --~'[Y) + [YF(2, --a'~')) 

8(o(, [3') = po(F(I, --ot'[~') - or'F(2, -oc'[Y)) 

On calculating the plastic power in the characteristic rectangle, we obtain 

Wl ~j 0 
(SR- pS) dr3do~ = 200 (R 0 (c~ 1 )2 [~1 + SoC~l ([~1)2 ) F(3,al[~l ) + -~-= 

+p0 (Ro + S0)(2Ctl[~lF(2,CXl[~l)- F(l,Otl[~ I )+1) 

We calculate the plastic power for the centred fan/)2 = { (a, I]): 0 ~< o~ ~< al,  1~ in a polar system of coordinates. 
The pole of  the polar system of coordinates is made to coincide with the vertex of the fan and the polar axis is 
directed along a radius. Since, R(ot, r) = r, S = ** then, using (1.6) and (4.1), we obtain 

W2 ~) cz I a! ~ 
- - k  = Jo OI P( tX - °~l ,~l ) d°~dr = - Ro o ~ - ~  d ~  = R°P° ( °q F ( 2'°~l~l ) + F( l'°q~il ) - I ) 

An analogous explession is obtained for the second fan. On integrating the velocity jumps along the lines which 
bound the plastic domain and summing all of the resulting expressions, we find the power for the whole of the 
domain D 

Wl(kPo) =: o~(RoOt+So~) F(3,ct~) +2(R0a +(Ro + S0) ct~ +Soil) F(2,a[3)+ (R 0 +S 0) F(I,Oc[~) 

where a = al, 1~ = 191. 
Using the relations between hypergeometric functions and Bessel functions, the last formula can be reduced to 

the form 

W/(kD0 ) = (R 0 + S O )(~111 (~1) + Io(~l ) )+  2! Ro(X I + SO[~ l )lo(~l ), ~1 "~ 2 a~-~l~ 

which is identical with the energy release formula from [4]. 
2. Reduction of file band in a long wedge-shaped matrix. The deformation scheme and the corresponding 

hodograph are shown in Fig. 5. By symmetry, the domain D1 in the physical plane is formed by curved arcs of equal 
radii R0 = So and D3 is a domain of the simple stressed state. The boundary [~-lines in Ds are equidistant curves. 
The boundary-value problems are successively solved using the results of Section 2: in the physical plane (in the 
domains D 1 and D 2 they are Riemann problems and in D4 it is a mixed problem) and in the plane of the hodograph. 
In accordance with S~ction 3, the results of the calculation of the power can be represented in the form of repeated 
series. 

For example, the plastic power in the domain D1 is represented by series of the form 

i Ats~t+s+lYs 
t,s=O 

p /Z~Ro  

a,,.vs 

/ 

f 

£ # 0" 0 ~ o  

Fig. 6. 
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where the eoeflicientsAt, depend on the geometrical parameters of the plasticity domain and allow of the estimate 

[At.J< c2  t / ( t - l ) [  

which is uniform with respect to s. 
It can be shown that all the resulting repeated series are dominated by the exponential series. The results of 

calculations of the total deformation stressp = W/No, carried out with an accuracy of e = 10 -5, are presented in 
Fig. 6 (curve 2) for the case of  reduction with zero friction in the long matrix with a half-angle of eonieity y = 10". 
For comparison, the results from [6], obtained with the same initial data fxom static conditions, are shown in the 
same figure (curve 1). The stress has been normalized with the factor 2kR0. 
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